Роботы помогают лучше разобраться в цветении фитопланктона

23.01.2018

Цветущий фитопланктон - это один из наиболее важных факторов, способствующих повышению эффективности “углеродного насоса” в Северной Атлантике. Для того, чтобы лучше разобраться в этом феномене, запущен проект ERC remOcean (удаленное считывание биохимического цикла в океане), возглавляемый специалистами Лаборатории Океанографии Вильефранса (CNRS / UPMC). В рамках проекта разработаны автономные роботы - биогеохимические профилированные поплавки. Эти роботы способны заниматься автономным сбором данных, находясь в океане по много месяцев подряд.

Изучив собранные роботами независимые данные, ученые смогли определить зону в Северной Атлантики, откуда начинается “взрывное” цветение фитопланктона. Эти результаты послужили основой для двух статей, опубликованных в Nature Geoscience и Nature Communications.

Северный Атлантический Океан расположен к северу от 50-й параллели и является одним из самых эффективных в мире поглотителей углерода. При площади поверхности менее, чем 1.5% от общей площади мирового океана, на эту территорию приходится до 20% всего CO2, поглощаемого океанами. Очень холодная вода на поверхности и сравнительно экстремальные погодные условия зимой способствуют эффективному захвату CO2 из атмосферы. Цветущий фитопланктон, растительные микроорганизмы, за счет явления, известного, как фотосинтез, активно превращают неорганический углерод, поглощенный водой, в органический углерод. А также обеспечивает его отправку на дно океана.

Традиционный метод слежения за цветением фитопланктона - это использование орбитальных наблюдений. О состоянии планктона судят по цвету океана, хотя этот метод имеет ряд недочетов, например, им не воспользуешься, когда поверхность планеты в интересующей ученых зоне скрыта облачным покровом. Другой традиционный метод - проведение океанографических экспедиций с использованием океанских судов - метод весьма затратный и, как правило, не ориентированный на проведение длительных наблюдений.

Для того, чтобы лучше изучить какие природные условия способствуют возникновению цветения фитопланктона, исследователи Лаборатории Океанографии Вильефранса (CNRS / UPMC) в 2012-2013 годы построили роботов, которые получили название “биогеохимические профилирующие поплавки”.

Эти роботы работают в толще воды, начиная от поверхности и вплоть до глубины 2000 метров. Благодаря их использованию, стало возможным собрать данные, которые никогда не были ранее доступны - сведения о полном годовом цикле. Данные включают не только глубину, температуру и соленость воды, но также интенсивность света, а также плотность изучаемых частиц, а также данные о концентрации хлорофилла (индикатора присутствия фитопланктона) и кислорода.

Используя собранные данные, ученые смогли точно определить, где и как запускается процесс цветения фитопланктона в Северной Атлантике. Опубликованное в журнале Nature Communications исследование подтвердило гипотезы о взрывном росте биомассы фитопланктона. Это явление возникает весной после “зимнего медленного кипения”, фазы, когда в зимнее время сокращается активность фитопланктона.

Кроме того, исследователи фокусировали усилия на данных, собранных в период с января по март, чтобы изучить сравнительно плохо понятное до сегодняшнего дня явление “зимнего медленного кипения”.

В еще одной статье, опубликованной в Nature Geoscience, показано, что цветение фитопланктона может начинаться и зимой, при условии, если будут выполнены определенные условия. В частности, фитопланктон не может расти в бурных водах, особенно в условиях недостатка света в это время года. Однако, если устанавливаются периоды относительно спокойного поведения поверхности океана, сокращение перемешивания вод позволяет фитопланктону получать больше света, что стимулирует цветение одного из видов фитопланктона - так называемых диатомовых водорослей.

Локальные очаги цветения заметны несколько дней подряд и зачастую именно здесь несколькими месяцами позднее может начаться взрывное цветение фитопланктона. Наблюдения и выводы ученых были воспроизведены на цифровых моделях и их можно будет интегрировать в прогнозные модели, которыми пользуются для расчетов статуса океанических экосистем.

Помимо того, что проект ERC remOcean позволил добыть эти ценные для ученых результаты, он также продемонстрировал важность робототехники в улучшении наших знаний об океане. Стало возможным запустить международную программу роботизированного мониторинга биогеохимии океана - Biogeochemical Argo2 в 2016 году. Ее среднесрочная цель - запустить в работу до 1000 профилирующих поплавков для массового и постоянного мониторинга жизни в океанах и влияния на нее климатических изменений.

+ +

Источник: roboticsresear.ch

Смотрите связанные статьи Robo-педии:

  Публикации

Последние материалы

Метки
AGV ai DARPA DIY DIY (своими руками) DJI Lely pick-and-place RPA VTOL авиация автоматизация автомобили автомобили и роботы автономные аддитивные технологии андроиды анималистичные антропоморфные Арт аэромобили аэротакси безопасность безработица и роботы беспилотники бионика больницы будущее бытовые роботы вакансии вектор вертолеты видео внедрения роботов водородные военные военные дроны военные роботы встречи высотные выставки газ Германия горнодобыча городское хозяйство гостиницы готовка еды Греция грузоперевозки группы дронов гуманоидные дайджест Дания доение роботизированное доильные роботы домашние роботы доставка беспилотниками доставка и роботы дронизация дроны Европа железные дороги животноводство захваты земледелие игрушки идеи измерения Израиль ИИ ИИ - вкратце инвентаризация Индия Иннополис инспекция интервью интерфейсы инфоботы Ирак Иран искусственный интеллект испытания исследования история Италия Казахстан как заработать Канада кейсы киборгизация кино Китай коботы коллаборативные роботы колонки коммунальное хозяйство компании компоненты конкурсы конспекты конструкторы концепты кооперативные роботы космос курьезы курьеры лабораторные роботы Латвия лизинг линки логистика люди и роботы машинное обучение медицина медицина и роботы металлургия мобильные роботы мойка море морские мусор мусор и роботы надводные наземные военные роботы налоги научные роботы необычные нефтегаз нефть Нидерланды Новая Зеландия Норвегия носимые роботы ОАЭ образование образовательная робототехника обучающие роботы общепит и роботы общество Объединенное Королевство октокоптеры онлайн-курсы робототехники опрыскивание охрана и беспилотники охрана и роботы патенты персональные роботы пищепром пляжи ПО подводные подводные роботы подземные пожарные пожарные роботы полевые роботы полезные роботы Португалия последняя миля потребительские роботы почта право презентации пресс-релизы применение беспилотников применение дронов применение роботов прогнозы проекты производство производство дронов происшествия промышленность промышленные роботы противодействие беспилотникам работа развлечения и беспилотники развлечения и роботы разработка распознавание речи растениеводство регулирование регулирование дронов регулирование робототехники рекорды рисунки робомех робомобили роботизация робототехника роботрендз роботренды роботы роботы и автомобили роботы и мусор роботы и обучение роботы и развлечения роботы и строительство роботы телеприсутствия роботы-транспортеры робошум рои рой Россия Руанда сад сайт RoboTrends.ru сбор урожая сварка связь сделки сельское хозяйство сенсоры сервисные роботы синтез речи склады склады и роботизация соревнования сортировка сотрудничество софт-роботика социальная робототехника социальные роботы спорт спорт и дроны спорт и роботы строительство США такси телеприсутствие теплицы термины терроризм тесты технологии техносказки торговля транспорт транспортные роботы тренды трубопроводы трубопроводы и роботизация уборка Украина уличные роботы Франция хобби-беспилотники ховербайки Хождение цифры чатбот шагающие роботы Швейцария Швеция шоу экзоскелеты эко-дроны экология электроника энергетика этика (робоэтика) Южная Корея юмор

Подписка: RSS, Email, Telegram
  Информация